The Tangent Plane, Linearization, And Differentials

The Tangent Plane:

Say we have a function z = f(x,y), whose graph is a surface *S*, and point (x_0,y_0) in the domain of *f*. If $z_0 = f(x_0,y_0)$, then (x_0,y_0,z_0) is a point on the surface *S*. Let $\mathbf{u} = \langle a,b \rangle$ be a unit vector. Let *T* be the tangent line at (x_0,y_0) in the direction of \mathbf{u} . In other words, *T* is a line passing through the point (x_0,y_0,z_0) , tangential to surface *S*. The slope of line *T* is the derivative of *f* at (x_0,y_0) in the direction of \mathbf{u} , $D_{\mathbf{u}} f(x_0,y_0)$. Let us refer to this slope as *m*. Then the vector equation of *T* is $\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, m \rangle$.

Let us focus on two particular tangent lines at (x_0, y_0) , one in the direction of $\mathbf{i} = \langle 1, 0 \rangle$ and the other in the direction of $\mathbf{j} = \langle 0, 1 \rangle$. We shall refer to these tangent lines as $T_{\mathbf{i}}$ and $T_{\mathbf{j}}$, respectively.

- The slope of T_i is $f_x(x_0, y_0)$, so the vector equation of T_i is $\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle 1, 0, f_x(x_0, y_0) \rangle$.
- The slope of T_j is $f_y(x_0, y_0)$, so the vector equation of T_j is $\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle 0, 1, f_y(x_0, y_0) \rangle$.

The direction vectors of T_i and T_j are $< 1, 0, f_x(x_0, y_0) >$ and $< 0, 1, f_y(x_0, y_0) >$. If these vectors are positioned at the common tail (x_0, y_0, z_0) , they determine a unique plane, which is the tangent plane, \mathfrak{T} , assuming *f* is differentiable at (x_0, y_0) . To find a normal vector for this plane, we compute the cross product of the direction vectors of T_i and T_j .

$$\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & f_x(x_0, y_0) \\ 0 & 1 & f_y(x_0, y_0) \end{bmatrix} = \begin{bmatrix} 0 & f_x(x_0, y_0) \\ 1 & f_y(x_0, y_0) \end{bmatrix} \mathbf{i} - \begin{bmatrix} 1 & f_x(x_0, y_0) \\ 0 & f_y(x_0, y_0) \end{bmatrix} \mathbf{j} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{k} = -f_x(x_0, y_0) \mathbf{i} - f_y(x_0, y_0) \mathbf{j} + 1 \mathbf{k} = \langle -f_x(x_0, y_0), -f_y(x_0, y_0), 1 \rangle.$$

Although this vector could serve as the normal vector for plane \mathfrak{I} , it'll be simpler if we use the opposite vector, which is $\langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$ (which we would have obtained if we had computed the cross product in the reverse order).

Now we can write the equation of plane \Im . Since it contains the point (x_0, y_0, z_0) and has normal vector $\langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$, its equation must be $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + (-1)(z - z_0) = 0$. We rewrite this as follows: $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - z + z_0 = 0$ $z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + z_0$ Call this Equation #1 $z = f_x(x_0, y_0)x - f_x(x_0, y_0)x_0 + f_y(x_0, y_0)y - f_y(x_0, y_0)y_0 + z_0$ $z = f_x(x_0, y_0)x + f_y(x_0, y_0)y + z_0 - f_x(x_0, y_0)x_0 - f_y(x_0, y_0)y_0$ Call this Equation #2

As previously discussed, the standard form for the equation of a plane is Ax + By + Cz = D. For a nonvertical plane (where $C \neq 0$), we can solve for *z* in terms of *x* and *y*, giving us $z = \left(-\frac{A}{C}\right)x + \left(-\frac{B}{C}\right)y + \frac{D}{C}$. Equation #2 is in this form.

The standard form equation for \Im is $f_x(x_0, y_0)x + f_y(x_0, y_0)y - z = f_x(x_0, y_0)x_0 + f_y(x_0, y_0)y_0 - z_0$. Call this Equation #3. Here we have:

- $A = f_x(x_0, y_0)$
- $B = f_y(x_0, y_0)$
- *C* = -1
- $D = f_x(x_0, y_0)x_0 + f_y(x_0, y_0)y_0 z_0$

Let's return our attention to Equation #1. The form of this equation has a special significance that you might not realize. To see the significance, let's go back for a moment to basic algebra. Recall that in the x, y plane, a line with slope m and passing through the point (x_0, y_0) has the equation $y - y_0 = m(x - x_0)$. This equation is said to be in *point*, *slope form*. It could be rewritten into the form y = mx + b, which is *slope*, *y intercept form*. However, there are times when it's preferable to keep the equation in point, slope form, but to modify that form as $y = m(x - x_0) + y_0$. This was seen in Calculus I. Given a function f(x), its tangent line at the point (x_0, y_0) has slope $f'(x_0)$, so the equation of the tangent line is $y = f'(x_0)(x - x_0) + y_0$. (This concept was generalized in Calculus II when we studied Taylor polynomials. For instance, at the point $(x_0, y_0) + y_0$. We could go on to formulate tangent cubics, tangent quartics, and so on.)

Anyway, if we take the equation $y = m(x - x_0) + y_0$ and "crank it up" an extra dimension, we get $z = m_1(x - x_0) + m_2(y - y_0) + z_0$. This new equation represents a plane rather than a line. Call this plane \wp . Just as (x_0, y_0) was a point on the line $y = m(x - x_0) + y_0$, (x_0, y_0, z_0) is a point on plane \wp . What is the significance of the coefficients m_1 and m_2 , if any? The concept of slope is not directly applicable to a plane, but it is *indirectly* applicable. If we intersect \wp with the vertical plane $y = y_0$ (which is parallel to the x, z plane), we obtain a line whose equation is $z = m_1(x - x_0) + z_0$, and m_1 is the slope of this line. On the other hand, if we intersect \wp with the vertical plane $x = x_0$ (which is parallel to the y, z plane), we obtain a line whose equation is $z = m_2(y - y_0) + z_0$, and m_2 is the slope of this line. Thus, m_1 and m_2 are the slopes of two traces (or cross sections) of the plane \wp . On the basis of this insight, it makes sense for us to refer to the equation $z = m_1(x - x_0) + m_2(y - y_0) + z_0$ as **point**, **slope form** for the equation of the plane.

Now we see that Equation #1 is the equation of the tangent plane in point, slope form.

While we're at it, let's take a further look at the equation of a nonvertical plane in the form $z = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$. This is the three-dimensional version of the two-dimensional equation y = mx + b, which is the equation of a nonvertical line in the x, y plane. Technically, the y intercept of this line is the point (0, b), but, speaking casually, we can say the y intercept is b. That's why y = mx + b is referred to as the slope, y intercept form of the equation. Analogously, the z intercept of the plane $z = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$ is the point $(0, 0, \frac{D}{C})$, but, speaking casually, we can say the z intercept is $\frac{D}{C}$. What is the significance of the coefficients $-\frac{A}{C}$ and $-\frac{B}{C}$, if any? Let us refer to the plane $z = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$ as \wp . If we intersect \wp with the vertical plane y = 0 (which is the x, z plane), we obtain a line whose equation is $z = (-\frac{A}{C})x + \frac{D}{C}$, and $-\frac{A}{C}$ is the slope of this line. On the other hand, if we

intersect \wp with the vertical plane x = 0 (which is the y, z plane), we obtain a line whose equation is $z = (-\frac{B}{C})y + \frac{D}{C}$, and $-\frac{B}{C}$ is the slope of this line. Thus, $-\frac{A}{C}$ and $-\frac{B}{C}$ are the slopes of two traces (or cross sections) of the plane \wp . On the basis of this insight, it makes sense for us to refer to the equation $z = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$ as **slope**, *z* **intercept form** for the equation of the plane.

In summary, the equation of the tangent plane can be written in three major forms:

- $z = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0) + z_0$ is point, slope form.
- $z = f_x(x_0, y_0)x + f_y(x_0, y_0)y + z_0 f_x(x_0, y_0)x_0 f_y(x_0, y_0)y_0$ is slope, z intercept form.

• $f_x(x_0, y_0)x + f_y(x_0, y_0)y - z = f_x(x_0, y_0)x_0 + f_y(x_0, y_0)y_0 - z_0$ is standard form.

All three are worthwhile, but point, slope form is the preferred form.

As previously discussed, the function $f(x,y) = x^2 + y^2$ has a tangent plane at (2,3) and its equation is 4x + 6y - z = 13 in standard form. We have noted that the left side of the equation is $f_x(2,3)x + f_y(2,3)y - z$, which is consistent with our general formula, where the left side is $f_x(x_0,y_0)x + f_y(x_0,y_0)y - z$. The general formula says the right side of the equation should be $f_x(x_0,y_0)x + f_y(x_0,y_0)y_0 - z_0$, i.e., $f_x(2,3)2 + f_y(2,3)3 - f(2,3)$, which is (4)2 + (6)3 - 13, which does work out to be 13.

For the function $f(x,y) = x^2 + y^2$, the tangent plane at (2,3) has point, slope equation z = 4(x-2) + 6(y-3) + 13, and it has slope, *z* intercept equation z = 4x + 6y - 13.

The right side of the tangent plane's equation in standard form can be expressed as $\nabla f(x_0, y_0) \cdot \langle x_0, y_0 \rangle -z_0$. The left side can be expressed as $\nabla f(x_0, y_0) \cdot \langle x, y \rangle -z$. Hence, the standard form equation can be written as $\nabla f(x_0, y_0) \cdot \langle x, y \rangle -z = \nabla f(x_0, y_0) \cdot \langle x_0, y_0 \rangle -z_0$. In fact, we could rewrite this as follows: $\nabla f(x_0, y_0) \cdot \langle x, y \rangle -\nabla f(x_0, y_0) \cdot \langle x_0, y_0 \rangle = z - z_0$ $\nabla f(x_0, y_0) \cdot \langle x - x_0, y - y_0 \rangle = z - z_0$ $\nabla f(x_0, y_0) \cdot \langle x - x_0, y - y_0 \rangle = z - z_0$ Call this the **gradient vector form**.

In the case of the function $f(x,y) = x^2 + y^2$, the gradient vector form for the equation of the tangent plane at (2,3) is $\langle 4, 6 \rangle \cdot \langle x - 2, y - 3 \rangle = z - 13$.

As previously discussed, the function $f(x,y) = x^2 + y^2$ has gradient vector < -14, 26 > at the point (-7, 13). Since $z_0 = f(-7, 13) = 218$, the tangent plane at (-7, 13) has the following equations:

- $< -14, 26 > \cdot < x + 7, y 13 > = z 218$ in gradient vector form.
- z = -14(x + 7) + 26(y 13) + 218 in point, slope form.
- z = -14x + 26y 218 in slope, *z* intercept form.
- -14x + 26y z = 218 in standard form.

Linearization:

Recall that in two dimensions, a linear function is a function whose graph is a nonvertical

line with slope *m*, and whose equation, in slope, *y* intercept form, is y = mx + b. In three dimensions, a linear function is a function whose graph is a nonvertical plane, and whose equation is $z = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$ in slope, *z* intercept form, or $z = m_1(x - x_0) + m_2(y - y_0) + z_0$ in point, slope form. A linear function in three dimensions is commonly named L(x,y). Thus, we may write $L(x,y) = (-\frac{A}{C})x + (-\frac{B}{C})y + \frac{D}{C}$, or $L(x,y) = m_1(x - x_0) + m_2(y - y_0) + z_0$.

If the function z = f(x,y) is differentiable at (x_0,y_0) , then it has a tangent plane at this point, \Im , which is the graph of a linear function, L(x,y). We call this function the **linearization** of *f* at (x_0,y_0) . We have:

- $L(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + z_0$
- $L(x,y) = f_x(x_0,y_0)x + f_y(x_0,y_0)y + z_0 f_x(x_0,y_0)x_0 f_y(x_0,y_0)y_0$

The linearization of *f* at (x_0, y_0) is also called the **linear approximation** of the function at (x_0, y_0) .

The linearization of $f(x,y) = x^2 + y^2$ at (2,3) is L(x,y) = 4(x-2) + 6(y-3) + 13, or L(x,y) = z = 4x + 6y - 13.

For the function $f(x,y) = 7x^2 - 5xy + 2y^3$, $f_x(x,y) = 14x - 5y$ and $f_y(x,y) = -5x + 6y^2$. At the point (2, 1), we have $z_0 = f(2, 1) = 20$ and $\nabla f(2, 1) = \langle 23, -4 \rangle$, so the tangent plane's equation is $\langle 23, -4 \rangle \cdot \langle x - 2, y - 1 \rangle = z - 20$, or z = 23(x - 2) - 4(y - 1) + 20, or z = 23x - 4y - 22. Hence, the function's linearization at (2, 1) is L(x,y) = 23(x-2) - 4(y-1) + 20, or L(x,y) = 23x - 4y - 22.

Differentials:

Say we have a function z = f(x,y), whose linearization at (x_0,y_0) is $L(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + z_0$. By definition, $z_0 = f(x_0,y_0)$. Notice that $L(x_0,y_0) = 0 + 0 + z_0 = z_0$. Thus, $L(x_0,y_0) = f(x_0,y_0)$. If we refer to the graph of *f* as surface *S*, and to the graph of *L* as plane \Im , then the equation $L(x_0,y_0) = f(x_0,y_0)$ means that *S* and \Im coincide at the point (x_0,y_0,z_0) . This is actually quite trivial. All we are saying is that the graph of the function and its tangent plane coincide at the point of tangency.

When $(x,y) \neq (x_0,y_0)$, L(x,y) serves as an *approximation* to f(x,y). The approximation is generally good when (x,y) is close to (x_0,y_0) , and is generally poor when (x,y) is far away from (x_0,y_0) .

For any point (x, y) different from (x_0, y_0) , let dx be the deviation of x from x_0 , and let dy be the deviation of y from y_0 . In other words, $dx = x - x_0$ and $dy = y - y_0$. It follows that $x = x_0 + dx$ and $y = y_0 + dy$, and so $(x, y) = (x_0 + dx, y_0 + dy)$.

When (x, y) changes from (x_0, y_0) to $(x_0 + dx, y_0 + dy)$, f(x, y) changes from $f(x_0, y_0) = z_0$ to $f(x_0 + dx, y_0 + dy)$. We denote this change as Δf . $\Delta f = f(x_0 + dx, y_0 + dy) - f(x_0, y_0) = f(x_0 + dx, y_0 + dy) - z_0$. When (x,y) changes from (x_0,y_0) to $(x_0 + dx, y_0 + dy)$, L(x,y) changes from $L(x_0,y_0) = z_0$ to $L(x_0 + dx, y_0 + dy)$. We denote this change as ΔL . $\Delta L = L(x_0 + dx, y_0 + dy) - L(x_0,y_0) = L(x_0 + dx, y_0 + dy) - z_0$.

Just as $L(x,y) \approx f(x,y)$, likewise $\Delta L \approx \Delta f$.

 $L(x_0 + dx, y_0 + dy) = f_x(x_0, y_0)(x_0 + dx - x_0) + f_y(x_0, y_0)(y_0 + dy - y_0) + z_0 = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy + z_0.$

So $\Delta L = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy + z_0 - z_0 = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$. Note that this could also be expressed as $\nabla f(x_0, y_0) \cdot \langle dx, dy \rangle$.

We define this quantity to be the **differential** of the function *f*, denoted *df*. By definition, $df = \Delta L$. Hence $df \approx \Delta f$.

Since we have z = f(x, y), we may write dz in place of df.

All of this is analogous to what we do in Calculus I...

Say we have a function, y = f(x). At x_0 , the slope of the tangent line is $f'(x_0)$. If $y_0 = f(x_0)$, then the tangent line has the equation $y - y_0 = f'(x_0)(x - x_0)$, or $y = f'(x_0)(x - x_0) + y_0$. We may think of this as a linear function, $L(x) = f'(x_0)(x - x_0) + y_0$, known as the linearization of f(x) at the point x_0 .

Let dx be the deviation of x from x_0 . $dx = x - x_0$, so $x = x_0 + dx$.

When x changes from x_0 to $x_0 + dx$, f(x) changes from $f(x_0) = y_0$ to $f(x_0 + dx)$. We denote this change as Δf . $\Delta f == f(x_0 + dx) - f(x_0) = f(x_0 + dx) - y_0$.

When *x* changes from x_0 to $x_0 + dx$, L(x) changes from $L(x_0) = y_0$ to $L(x_0 + dx)$. We denote this change as ΔL . $\Delta L = L(x_0 + dx) - L(x_0) = L(x_0 + dx) - y_0$. But $L(x_0 + dx) = f'(x_0)(x_0 + dx - x_0) + y_0 = f'(x_0)dx + y_0$, so $\Delta L = f'(x_0)dx + y_0 - y_0 = f'(x_0)dx$.

We define this quantity to be the differential of the function *f*, denoted *df*, i.e., $df = f(x_0)dx$. By definition, $df = \Delta L$. Hence $df \approx \Delta f$.

Since we have y = f(x), we may write dy in place of df.

To illustrate, consider $f(x,y) = x^2 + y^2$, whose linearization at (2,3) is L(x,y) = 4(x-2) + 6(y-3) + 13. Both functions have a value of 13 at (2,3). At (1,5), the values of *f* and *L* will differ. f(1,5) = 26, whereas L(1,5) = 21. 21 is a poor approximation to 26, but that is because (1,5) is relatively far away from (2,3)–the distance is $\sqrt{5} \approx 2.24$. Anyway, when (x,y) varies from (2,3) to (1,5), we have $\Delta f = 26 - 13 = 13$ and

 $\Delta L = 21 - 13 = 8$. Again, 8 is a poor approximation to 13, but this is because of the relatively large distance between (2,3) and (1,5). Here we have dx = -1 and dy = 2. Note that $df = \Delta L = \nabla f(2,3) \cdot \langle -1,2 \rangle = \langle 4,6 \rangle \cdot \langle -1,2 \rangle = -4 + 12 = 8$.

Now suppose we have a smaller deviation from (2,3), let's say to the point (1.8,3.4). f(1.8,3.4) = 14.8, whereas L(1.8,3.4) = 14.6. 14.6 is a good approximation to 14.8. When (x,y) varies from (2,3) to (1.8,3.4), we have $\Delta f = 14.8 - 13 = 1.8$ and $\Delta L = 14.6 - 13 = 1.6$. 1.6 is a good approximation to 1.8. Here we have dx = -0.2 and dy = 0.4. Note that $df = \Delta L = \nabla f(2,3) \cdot \langle -0.2, 0.4 \rangle = \langle 4,6 \rangle \cdot \langle -0.2, 0.4 \rangle = -0.8 + 2.4 = 1.6$.