The Tangent Plane, Linearization, And Differentials

The Tangent Plane:

Say we have a function $z=f(x, y)$, whose graph is a surface S, and point $\left(x_{0}, y_{0}\right)$ in the domain of f. If $z_{0}=f\left(x_{0}, y_{0}\right)$, then $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the surface S. Let $\mathbf{u}=<a, b>$ be a unit vector. Let T be the tangent line at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u}. In other words, T is a line passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$, tangential to surface S. The slope of line T is the derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of $\mathbf{u}, D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$. Let us refer to this slope as m. Then the vector equation of T is $\mathbf{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, m\rangle$.

Let us focus on two particular tangent lines at (x_{0}, y_{0}), one in the direction of $\mathbf{i}=<1,0>$ and the other in the direction of $\mathbf{j}=\langle 0,1\rangle$. We shall refer to these tangent lines as $T_{\mathbf{i}}$ and $T_{\mathbf{j}}$, respectively.

- The slope of T_{i} is $f_{x}\left(x_{0}, y_{0}\right)$, so the vector equation of T_{i} is
$\mathbf{r}(t)=<x_{0}, y_{0}, z_{0}>+t<1,0, f_{x}\left(x_{0}, y_{0}\right)>$.
- The slope of $T_{\mathbf{j}}$ is $f_{y}\left(x_{0}, y_{0}\right)$, so the vector equation of $T_{\mathbf{j}}$ is

$$
\mathbf{r}(t)=\left\langle x_{0}, y_{0}, z_{0}>+t<0,1, f_{y}\left(x_{0}, y_{0}\right)>.\right.
$$

The direction vectors of $T_{\mathbf{i}}$ and $T_{\mathbf{j}}$ are $<1,0, f_{x}\left(x_{0}, y_{0}\right)>$ and $<0,1, f_{y}\left(x_{0}, y_{0}\right)>$. If these vectors are positioned at the common tail (x_{0}, y_{0}, z_{0}), they determine a unique plane, which is the tangent plane, \mathfrak{J}, assuming f is differentiable at $\left(x_{0}, y_{0}\right)$. To find a normal vector for this plane, we compute the cross product of the direction vectors of $T_{\mathbf{i}}$ and $T_{\mathbf{j}}$.
$\operatorname{det}\left[\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & f_{x}\left(x_{0}, y_{0}\right) \\ 0 & 1 & f_{y}\left(x_{0}, y_{0}\right)\end{array}\right]=\left|\begin{array}{cc}0 & f_{x}\left(x_{0}, y_{0}\right) \\ 1 & f_{y}\left(x_{0}, y_{0}\right)\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}1 & f_{x}\left(x_{0}, y_{0}\right) \\ 0 & f_{y}\left(x_{0}, y_{0}\right)\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right| \mathbf{k}=$
$-f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}-f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}+1 \mathbf{k}=<-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1>$.

Although this vector could serve as the normal vector for plane \mathfrak{I}, it'll be simpler if we use the opposite vector, which is $<f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1>$ (which we would have obtained if we had computed the cross product in the reverse order).

Now we can write the equation of plane \mathfrak{I}. Since it contains the point $\left(x_{0}, y_{0}, z_{0}\right)$ and has normal vector $<f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1>$, its equation must be
$f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+(-1)\left(z-z_{0}\right)=0$. We rewrite this as follows:
$f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-z+z_{0}=0$
$z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0} \quad$ Call this Equation \#1
$z=f_{x}\left(x_{0}, y_{0}\right) x-f_{x}\left(x_{0}, y_{0}\right) x_{0}+f_{y}\left(x_{0}, y_{0}\right) y-f_{y}\left(x_{0}, y_{0}\right) y_{0}+z_{0}$
$z=f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y+z_{0}-f_{x}\left(x_{0}, y_{0}\right) x_{0}-f_{y}\left(x_{0}, y_{0}\right) y_{0} \quad$ Call this Equation \#2

As previously discussed, the standard form for the equation of a plane is $A x+B y+C z=D$. For a nonvertical plane (where $C \neq 0$), we can solve for z in terms of x and y, giving us
$z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$. Equation \#2 is in this form.

The standard form equation for \mathfrak{J} is $f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y-z=f_{x}\left(x_{0}, y_{0}\right) x_{0}+f_{y}\left(x_{0}, y_{0}\right) y_{0}-z_{0}$. Call this Equation \#3. Here we have:

- $A=f_{x}\left(x_{0}, y_{0}\right)$
- $B=f_{y}\left(x_{0}, y_{0}\right)$
- $C=-1$
- $D=f_{x}\left(x_{0}, y_{0}\right) x_{0}+f_{y}\left(x_{0}, y_{0}\right) y_{0}-z_{0}$

Let's return our attention to Equation \#1. The form of this equation has a special significance that you might not realize. To see the significance, let's go back for a moment to basic algebra. Recall that in the x, y plane, a line with slope m and passing through the point $\left(x_{0}, y_{0}\right)$ has the equation $y-y_{0}=m\left(x-x_{0}\right)$. This equation is said to be in point, slope form. It could be rewritten into the form $y=m x+b$, which is slope, y intercept form. However, there are times when it's preferable to keep the equation in point, slope form, but to modify that form as $y=m\left(x-x_{0}\right)+y_{0}$. This was seen in Calculus I. Given a function $f(x)$, its tangent line at the point $\left(x_{0}, y_{0}\right)$ has slope $f^{\prime}\left(x_{0}\right)$, so the equation of the tangent line is $y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$. (This concept was generalized in Calculus II when we studied Taylor polynomials. For instance, at the point $\left(x_{0}, y_{0}\right)$, the function has a tangent parabola whose equation is $y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$. We could go on to formulate tangent cubics, tangent quartics, and so on.)

Anyway, if we take the equation $y=m\left(x-x_{0}\right)+y_{0}$ and "crank it up" an extra dimension, we get $z=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+z_{0}$. This new equation represents a plane rather than a line. Call this plane \wp. Just as $\left(x_{0}, y_{0}\right)$ was a point on the line $y=m\left(x-x_{0}\right)+y_{0},\left(x_{0}, y_{0}, z_{0}\right)$ is a point on plane \wp. What is the significance of the coefficients m_{1} and m_{2}, if any? The concept of slope is not directly applicable to a plane, but it is indirectly applicable. If we intersect \wp with the vertical plane $y=y_{0}$ (which is parallel to the x, z plane), we obtain a line whose equation is $z=m_{1}\left(x-x_{0}\right)+z_{0}$, and m_{1} is the slope of this line. On the other hand, if we intersect \wp with the vertical plane $x=x_{0}$ (which is parallel to the y, z plane), we obtain a line whose equation is $z=m_{2}\left(y-y_{0}\right)+z_{0}$, and m_{2} is the slope of this line. Thus, m_{1} and m_{2} are the slopes of two traces (or cross sections) of the plane \wp. On the basis of this insight, it makes sense for us to refer to the equation $z=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+z_{0}$ as point, slope form for the equation of the plane.

Now we see that Equation \#1 is the equation of the tangent plane in point, slope form.

While we're at it, let's take a further look at the equation of a nonvertical plane in the form $z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$. This is the three-dimensional version of the two-dimensional equation $y=m x+b$, which is the equation of a nonvertical line in the x, y plane. Technically, the y intercept of this line is the point $(0, b)$, but, speaking casually, we can say the y intercept is b. That's why $y=m x+b$ is referred to as the slope, y intercept form of the equation. Analogously, the z intercept of the plane $z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$ is the point ($0,0, \frac{D}{C}$), but, speaking casually, we can say the z intercept is $\frac{D}{C}$. What is the significance of the coefficients $-\frac{A}{C}$ and $-\frac{B}{C}$, if any? Let us refer to the plane $z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$ as \wp. If we intersect \wp with the vertical plane $y=0$ (which is the x, z plane), we obtain a line whose equation is $z=\left(-\frac{A}{C}\right) x+\frac{D}{C}$, and $-\frac{A}{C}$ is the slope of this line. On the other hand, if we
intersect \wp with the vertical plane $x=0$ (which is the y, z plane), we obtain a line whose equation is $z=\left(-\frac{B}{C}\right) y+\frac{D}{C}$, and $-\frac{B}{C}$ is the slope of this line. Thus, $-\frac{A}{C}$ and $-\frac{B}{C}$ are the slopes of two traces (or cross sections) of the plane \wp. On the basis of this insight, it makes sense for us to refer to the equation $z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$ as slope, z intercept form for the equation of the plane.

In summary, the equation of the tangent plane can be written in three major forms:

- $z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$ is point, slope form.
- $z=f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y+z_{0}-f_{x}\left(x_{0}, y_{0}\right) x_{0}-f_{y}\left(x_{0}, y_{0}\right) y_{0}$ is slope, z intercept form.
- $f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y-z=f_{x}\left(x_{0}, y_{0}\right) x_{0}+f_{y}\left(x_{0}, y_{0}\right) y_{0}-z_{0}$ is standard form.

All three are worthwhile, but point, slope form is the preferred form.
As previously discussed, the function $f(x, y)=x^{2}+y^{2}$ has a tangent plane at $(2,3)$ and its equation is $4 x+6 y-z=13$ in standard form. We have noted that the left side of the equation is $f_{x}(2,3) x+f_{y}(2,3) y-z$, which is consistent with our general formula, where the left side is $f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y-z$. The general formula says the right side of the equation should be $f_{x}\left(x_{0}, y_{0}\right) x_{0}+f_{y}\left(x_{0}, y_{0}\right) y_{0}-z_{0}$, i.e., $f_{x}(2,3) 2+f_{y}(2,3) 3-f(2,3)$, which is $(4) 2+(6) 3-13$, which does work out to be 13 .

For the function $f(x, y)=x^{2}+y^{2}$, the tangent plane at $(2,3)$ has point, slope equation $z=4(x-2)+6(y-3)+13$, and it has slope, z intercept equation $z=4 x+6 y-13$.

The right side of the tangent plane's equation in standard form can be expressed as $\nabla f\left(x_{0}, y_{0}\right) \cdot<x_{0}, y_{0}>-z_{0}$. The left side can be expressed as $\nabla f\left(x_{0}, y_{0}\right) \cdot<x, y>-z$. Hence, the standard form equation can be written as $\nabla f\left(x_{0}, y_{0}\right) \cdot\langle x, y\rangle-z=\nabla f\left(x_{0}, y_{0}\right) \cdot$
$<x_{0}, y_{0}>-z_{0}$. In fact, we could rewrite this as follows:
$\nabla f\left(x_{0}, y_{0}\right) \cdot\left\langle x, y>-\nabla f\left(x_{0}, y_{0}\right) \cdot<x_{0}, y_{0}>=z-z_{0}\right.$
$\nabla f\left(x_{0}, y_{0}\right) \cdot\left(<x, y>-<x_{0}, y_{0}>\right)=z-z_{0}$
$\nabla f\left(x_{0}, y_{0}\right) \cdot<x-x_{0}, y-y_{0}>=z-z_{0} \quad$ Call this the gradient vector form.
In the case of the function $f(x, y)=x^{2}+y^{2}$, the gradient vector form for the equation of the tangent plane at $(2,3)$ is $\langle 4,6\rangle \cdot\langle x-2, y-3\rangle=z-13$.

As previously discussed, the function $f(x, y)=x^{2}+y^{2}$ has gradient vector $<-14,26>$ at the point $(-7,13)$. Since $z_{0}=f(-7,13)=218$, the tangent plane at $(-7,13)$ has the following equations:

- $\langle-14,26\rangle \cdot\langle x+7, y-13\rangle=z-218$ in gradient vector form.
- $z=-14(x+7)+26(y-13)+218$ in point, slope form.
- $z=-14 x+26 y-218$ in slope, z intercept form.
- $-14 x+26 y-z=218$ in standard form.

Linearization:

Recall that in two dimensions, a linear function is a function whose graph is a nonvertical
line with slope m, and whose equation, in slope, y intercept form, is $y=m x+b$. In three dimensions, a linear function is a function whose graph is a nonvertical plane, and whose equation is $z=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$ in slope, z intercept form, or $z=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+z_{0}$ in point, slope form. A linear function in three dimensions is commonly named $L(x, y)$. Thus, we may write $L(x, y)=\left(-\frac{A}{C}\right) x+\left(-\frac{B}{C}\right) y+\frac{D}{C}$, or $L(x, y)=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+z_{0}$.

If the function $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then it has a tangent plane at this point, \mathfrak{I}, which is the graph of a linear function, $L(x, y)$. We call this function the linearization of f at $\left(x_{0}, y_{0}\right)$. We have:

- $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$
- $L(x, y)=f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y+z_{0}-f_{x}\left(x_{0}, y_{0}\right) x_{0}-f_{y}\left(x_{0}, y_{0}\right) y_{0}$

The linearization of f at $\left(x_{0}, y_{0}\right)$ is also called the linear approximation of the function at $\left(x_{0}, y_{0}\right)$.

The linearization of $f(x, y)=x^{2}+y^{2}$ at $(2,3)$ is $L(x, y)=4(x-2)+6(y-3)+13$, or $L(x, y)=z=4 x+6 y-13$.

For the function $f(x, y)=7 x^{2}-5 x y+2 y^{3}, f_{x}(x, y)=14 x-5 y$ and $f_{y}(x, y)=-5 x+6 y^{2}$. At the point $(2,1)$, we have $z_{0}=f(2,1)=20$ and $\nabla f(2,1)=\langle 23,-4\rangle$, so the tangent plane's equation is $<23,-4>\cdot<x-2, y-1>=z-20$, or $z=23(x-2)-4(y-1)+20$, or $z=23 x-4 y-22$. Hence, the function's linearization at $(2,1)$ is $L(x, y)=23(x-2)-4(y-1)+20$, or $L(x, y)=23 x-4 y-22$.

Differentials:

Say we have a function $z=f(x, y)$, whose linearization at $\left(x_{0}, y_{0}\right)$ is $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$. By definition, $z_{0}=f\left(x_{0}, y_{0}\right)$. Notice that $L\left(x_{0}, y_{0}\right)=0+0+z_{0}=z_{0}$. Thus, $L\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$. If we refer to the graph of f as surface S, and to the graph of L as plane \mathfrak{I}, then the equation $L\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$ means that S and \mathfrak{I} coincide at the point $\left(x_{0}, y_{0}, z_{0}\right)$. This is actually quite trivial. All we are saying is that the graph of the function and its tangent plane coincide at the point of tangency.

When $(x, y) \neq\left(x_{0}, y_{0}\right), L(x, y)$ serves as an approximation to $f(x, y)$. The approximation is generally good when (x, y) is close to $\left(x_{0}, y_{0}\right)$, and is generally poor when (x, y) is far away from $\left(x_{0}, y_{0}\right)$.

For any point (x, y) different from $\left(x_{0}, y_{0}\right)$, let $d x$ be the deviation of x from x_{0}, and let $d y$ be the deviation of y from y_{0}. In other words, $d x=x-x_{0}$ and $d y=y-y_{0}$. It follows that $x=x_{0}+d x$ and $y=y_{0}+d y$, and so $(x, y)=\left(x_{0}+d x, y_{0}+d y\right)$.

When (x, y) changes from $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}+d x, y_{0}+d y\right), f(x, y)$ changes from $f\left(x_{0}, y_{0}\right)=z_{0}$ to $f\left(x_{0}+d x, y_{0}+d y\right)$. We denote this change as Δf.
$\Delta f=f\left(x_{0}+d x, y_{0}+d y\right)-f\left(x_{0}, y_{0}\right)=f\left(x_{0}+d x, y_{0}+d y\right)-z_{0}$.

When (x, y) changes from $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}+d x, y_{0}+d y\right), L(x, y)$ changes from $L\left(x_{0}, y_{0}\right)=z_{0}$ to $L\left(x_{0}+d x, y_{0}+d y\right)$. We denote this change as ΔL.
$\Delta L=L\left(x_{0}+d x, y_{0}+d y\right)-L\left(x_{0}, y_{0}\right)=L\left(x_{0}+d x, y_{0}+d y\right)-z_{0}$.
Just as $L(x, y) \approx f(x, y)$, likewise $\Delta L \approx \Delta f$.
$L\left(x_{0}+d x, y_{0}+d y\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x_{0}+d x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y_{0}+d y-y_{0}\right)+z_{0}=$
$f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y+z_{0}$.
So $\Delta L=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y+z_{0}-z_{0}=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y$. Note that this could also be expressed as $\nabla f\left(x_{0}, y_{0}\right) \cdot\langle d x, d y\rangle$.

We define this quantity to be the differential of the function f, denoted $d f$. By definition, $d f=\Delta L$. Hence $d f \approx \Delta f$.

Since we have $z=f(x, y)$, we may write $d z$ in place of $d f$.
All of this is analogous to what we do in Calculus I...
Say we have a function, $y=f(x)$. At x_{0}, the slope of the tangent line is $f\left(x_{0}\right)$. If $y_{0}=f\left(x_{0}\right)$, then the tangent line has the equation $y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, or $y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$. We may think of this as a linear function, $L(x)=f\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$, known as the linearization of $f(x)$ at the point x_{0}.

Let $d x$ be the deviation of x from $x_{0} . d x=x-x_{0}$, so $x=x_{0}+d x$.

When x changes from x_{0} to $x_{0}+d x, f(x)$ changes from $f\left(x_{0}\right)=y_{0}$ to $f\left(x_{0}+d x\right)$. We denote this change as $\Delta f . \Delta f==f\left(x_{0}+d x\right)-f\left(x_{0}\right)=f\left(x_{0}+d x\right)-y_{0}$.

When x changes from x_{0} to $x_{0}+d x, L(x)$ changes from $L\left(x_{0}\right)=y_{0}$ to $L\left(x_{0}+d x\right)$. We denote this change as $\Delta L . \Delta L=L\left(x_{0}+d x\right)-L\left(x_{0}\right)=L\left(x_{0}+d x\right)-y_{0}$. But
$L\left(x_{0}+d x\right)=f^{\prime}\left(x_{0}\right)\left(x_{0}+d x-x_{0}\right)+y_{0}=f^{\prime}\left(x_{0}\right) d x+y_{0}$, so
$\Delta L=f^{\prime}\left(x_{0}\right) d x+y_{0}-y_{0}=f\left(x_{0}\right) d x$.

We define this quantity to be the differential of the function f, denoted $d f$, i.e., $d f=f^{\prime}\left(x_{0}\right) d x$. By definition, $d f=\Delta L$. Hence $d f \approx \Delta f$.

Since we have $y=f(x)$, we may write $d y$ in place of $d f$.
To illustrate, consider $f(x, y)=x^{2}+y^{2}$, whose linearization at $(2,3)$ is $L(x, y)=4(x-2)+6(y-3)+13$. Both functions have a value of 13 at $(2,3)$. At (1,5), the values of f and L will differ. $f(1,5)=26$, whereas $L(1,5)=21.21$ is a poor approximation to 26 , but that is because $(1,5)$ is relatively far away from $(2,3)$-the distance is $\sqrt{5} \approx 2.24$. Anyway, when (x, y) varies from $(2,3)$ to $(1,5)$, we have $\Delta f=26-13=13$ and
$\Delta L=21-13=8$. Again, 8 is a poor approximation to 13 , but this is because of the relatively large distance between $(2,3)$ and $(1,5)$. Here we have $d x=-1$ and $d y=2$. Note that $d f=\Delta L=\nabla f(2,3) \cdot\langle-1,2\rangle=\langle 4,6\rangle \cdot\langle-1,2\rangle=-4+12=8$.

Now suppose we have a smaller deviation from (2,3), let's say to the point (1.8,3.4). $f(1.8,3.4)=14.8$, whereas $L(1.8,3.4)=14.6 .14 .6$ is a good approximation to 14.8. When (x, y) varies from $(2,3)$ to $(1.8,3.4)$, we have $\Delta f=14.8-13=1.8$ and $\Delta L=14.6-13=1.6$. 1.6 is a good approximation to 1.8. Here we have $d x=-0.2$ and $d y=0.4$. Note that $d f=\Delta L=\nabla f(2,3) \cdot\langle-0.2,0.4\rangle=\langle 4,6\rangle \cdot\langle-0.2,0.4\rangle=-0.8+2.4=1.6$.

